
14.05.2009 Curs Programare Web, anul 4 C5 – Curs 9

Universitatea Politehnica Bucuresti - Facultatea de Automatica si Calculatoare

1

Ciprian Dobre
ciprian.dobre@cs.pub.ro

Securitatea WebSecuritatea Web

Web Security Programming I

Building Security in from the Start

Except where otherwise noted all portions of this work are Copyright (c) 2007 Google
and are licensed under the Creative Commons Attribution 3.0 License

http://creativecommons.org/licenses/by/3.0/

A Simple Web Server

To illustrate what can go wrong if we do not
design for security in our web applications from
the start, consider a simple web server
implemented in Java.

All this program does is serve documents using
HTTP.

We will walkthrough the code in the following
slides.

Some Preliminaries…
• (HyperText Transfer Protocol): The

communications protocol used to connect to
servers on the Web.

• Its primary function is to establish a connection
with a Web server and transmit HTML pages to
the client browser or any other files required by
an HTTP application.

• Addresses of Web sites begin with an http://
prefix.

Some Preliminaries…
• A typical HTTP request that a browser makes to

a web server:
Get / HTTP/1.0

• When the server receives this request for
filename / (which means the root document on
the web server), it attempts to load index.html. It
sends back:
HTTP/1.0 200 OK

followed by the document contents.

SimpleWebServer: main()

/* This method is called when the program is run from
the command line. */

public static void main (String argv[]) throws Exception
{
/* Create a SimpleWebServer object, and run it */
SimpleWebServer sws = new SimpleWebServer();
sws.run();

}

SimpleWebServer Object
public class SimpleWebServer {

/* Run the HTTP server on this TCP port. */
private static final int PORT = 8080;

/* The socket used to process incoming connections
from web clients */

private static ServerSocket dServerSocket;

public SimpleWebServer () throws Exception {
dServerSocket = new ServerSocket (PORT);

}

public void run() throws Exception {
while (true) {
/* wait for a connection from a client */
Socket s = dServerSocket.accept();

/* then process the client's request */
processRequest(s);

}
}

SimpleWebServer: processRequest
1

/* Reads the HTTP request from the client, and
responds with the file the user requested or
a HTTP error code. */

public void processRequest(Socket s) throws Exception {

/* used to read data from the client */
BufferedReader br =

new BufferedReader (new InputStreamReader (s.getInputStream()));

/* used to write data to the client */
OutputStreamWriter osw =

new OutputStreamWriter (s.getOutputStream());

/* read the HTTP request from the client */
String request = br.readLine();

String command = null;
String pathname = null;

SimpleWebServer: processRequest
2

/* parse the HTTP request */
StringTokenizer st =

new StringTokenizer (request, " ");

command = st.nextToken();
pathname = st.nextToken();

if (command.equals("GET")) {
/* if the request is a GET

try to respond with the file
the user is requesting */

serveFile (osw,pathname);
}
else {

/* if the request is a NOT a GET,
return an error saying this server
does not implement the requested command */

osw.write ("HTTP/1.0 501 Not Implemented\n\n");
}

/* close the connection to the client */
osw.close();

SimpleWebServer:
serveFile 1

public void serveFile (OutputStreamWriter osw,

String pathname) throws Exception {
FileReader fr=null;
int c=-1;
StringBuffer sb = new StringBuffer();

/* remove the initial slash at the beginning
of the pathname in the request */

if (pathname.charAt(0)=='/')
pathname=pathname.substring(1);

/* if there was no filename specified by the
client, serve the "index.html" file */

if (pathname.equals(""))
pathname="index.html";

SimpleWebServer:
serveFile 2

/* try to open file specified by pathname */
try {

fr = new FileReader (pathname);
c = fr.read();

}
catch (Exception e) {

/* if the file is not found,return the
appropriate HTTP response code */

osw.write ("HTTP/1.0 404 Not Found\n\n");
return;

}

SimpleWebServer:
serveFile 3

/* if the requested file can be
successfully opened and read, then
return an OK response code and send
the contents of the file */
osw.write ("HTTP/1.0 200 OK\n\n");
while (c != -1) {

sb.append((char)c);
c = fr.read();

}
osw.write (sb.toString());

Can you identify any security vulnerabilities
in SimpleWebServer?

QuizQuiz

What Can Go Wrong?

Denial of Service (DoS):
• An attacker makes a web server

unavailable.
• Example: an online bookstore’s web

server crashes and the bookstore loses
revenue

DoS on SimpleWebServer?

Just send a carriage return as the first
message instead of a properly
formatted GET message…

DoS on SimpleWebServer?

processRequest():

/* read the HTTP request from the client */
String request = br.readLine();

String command = null;
String pathname = null;

/* parse the HTTP request */
StringTokenizer st =

new StringTokenizer (request, " ");

command = st.nextToken();
pathname = st.nextToken();

DoS on SimpleWebServer?

• The web server crashes
• Service to all subsequent clients is denied

until the web server is restarted

How Do We Fix This?

• The web server should immediately
disconnect from any web client that sends
a malformed HTTP request to the server.

• The programmer needs to carefully handle
exceptions to deal with malformed
requests.

How would you fix this code?
processRequest():

/* read the HTTP request from the client */
String request = br.readLine();

String command = null;
String pathname = null;

/* parse the HTTP request */
StringTokenizer st =

new StringTokenizer (request, " ");

command = st.nextToken();
pathname = st.nextToken();

A possible solution
/* read the HTTP request from the client */

String request = br.readLine();
String command = null;
String pathname = null;

try {
/* parse the HTTP request */

StringTokenizer st =
new StringTokenizer (request, " ");

command = st.nextToken();
pathname = st.nextToken();

} catch (Exception e) {
osw.write (“HTTP/1.0 400 Bad Request\n\n”);
osw.close();
return;

}

Importance of “Careful”
Exception Handling

• Error messages and observable behavior
can tip off an attacker to vulnerabilities

• Fault Injection: Providing a program with
input that it does not expect (as in the CR
for SimpleWebServer) and observing
behavior

Careful Exception Handling
• Two possible designs for

int checkPassword (String username, String password)

• The function could fail, so what exception should the function
return?

1)ERROR_ACCESS_DENIED
ERROR_PASS_FILE_NOT_FOUND
ERROR_OUT_OF_MEMORY
NO_ERROR_ACCESS_ALLOWED

2)NO_ERROR
ERROR
int getError ()

Be careful to not provide more information to a user than is needed.

Careful Exception Handling
int result = checkPassword (…)

if (result == ERROR_ACCESS_DENIED) {
abort();

}
else {

// Complete login
}

• Problem: result != ERROR_ACCESS_DENIED
does not infer ERROR_ACCESS_ALLOWED

• Result could have been:
ERROR_PASS_FILE_NOT_FOUND or
ERROR_OUT_OF_MEMORY !

Fail-Safe
int result = checkPassword (…)
if (result == NO_ERROR) {

// Complete login
}
else {

int reason = getError();
abort();

}

• Much better– less error prone!
• checkPassword failure occurs securely!

Sources

• The content of these slides was adapted
from:

• "Foundations of Security: What Every Programmer
Needs To Know" (ISBN 1590597842) by Neil Daswani,
Christoph Kern, and Anita Kesavan.

• http://www.learnsecurity.com/ntk

Security Design Principles

Except where otherwise noted all portions of this work are Copyright (c) 2007 Google
and are licensed under the Creative Commons Attribution 3.0 License

http://creativecommons.org/licenses/by/3.0/

Security Design Principles

• Least Privilege
• Defense in Depth
• Secure Weakest Link
• Fail-safe Stance
• Secure By Default
• Simplicity
• Usability

Principle of Least Privilege

• Just enough authority to get the job done.
• Common world example: Valet Keys
• A web server should only be given access

to the set of HTML files that the web
server is to serve.

SimpleWebServer and
“Elevated Privileges”

• Suppose a system administrator were to
run SimpleWebServer under the root
account

• When clients access the web server, they
can access all the files on the system!

• Maybe we can control this by not storing
sensitive documents in the web server’s
directory tree…

What about this?

GET ../../../../etc/shadow HTTP/1.0

Defense in Depth

• Also called redundancy / diversity
• Common world example: Banks
• Passwords:

– Require users to choose “strong” passwords
– Monitor web server logs for failed login

attempts

Secure the Weakest Link

• Common Weak Links:
– Unsecured Dial-In Hosts; War Dialers
– Weak Passwords; Crack
– People; Social Engineering Attacks
– Buffer Overflows

Fail-Safe Stance

• Common world example: Elevators
• System failure should be expected

(and planned for)
– If firewall fails, let no traffic in
– Deny access by default

SimpleWebServer and Fail-Safe

• serveFile()

/* if the requested file can be successfully opened
and read, then return an OK response code and send
the contents of the file */
osw.write ("HTTP/1.0 200 OK\n\n");
while (c != -1) {

sb.append((char)c);
c = fr.read();

}
osw.write (sb.toString());

An “Infinite” File

• The Linux /dev/random is a file that returns
random bits (often used to generate
cryptographic keys)

• It can be used as a source of infinite data..

• What happens when the web server
receives:
GET //dev/random HTTP/1.0

How Can We Fix This?
/* if the requested file can be
successfully opened and read, then
return an OK response code and send
the contents of the file */
osw.write ("HTTP/1.0 200 OK\n\n");
while (c != -1) {

sb.append((char)c);
c = fr.read();

}
osw.write (sb.toString());

Secure By Default

• Only enable the 20% of the products
features that are used by 80% of the user
population.

• “Hardening” a system:
All unnecessary services off by default

• More features enabled ->
more potential exploits ->
less security!

Simplicity

• Complex software is likely to have security
holes (i.e. sendmail).

• Use choke points – keep security checks
localized.

• Less functionality =
Less security exposure

Usability

• Users typically do not read documentation
(Therefore: Enable security by default)

• Users can be lazy
(Assume: They ignore security dialogs)

• Secure by default features in software
forces users and vendors to be secure.

Security Features Do Not Imply
Security

• Using one or more security
algorithms/protocols will not solve all your
problems!
– Using encryption doesn’t protect against weak

passwords.
– Using SSL in SimpleWebServer doesn’t

protect against DoS attacks, access to
/etc/shadow, etc.

Security Features Do Not Imply
Security

• Security features may be able to protect
against specific threats

• But if the software has bugs, is unreliable,
does not cover all possible corner cases:
The system may not be secure despite the
security features it has

“Good Enough” Security

• The fraction of time you spend designing
for security in your application should be
proportional to the number and types of
threats that your software and business
face

• But remember: Customers expect privacy
and security

“Good Enough” Security

Design for security by incorporating
“hooks” and other low-effort functionality
from the beginning. This way, you can add
more security as needed without having to
resort to work-arounds.

And Don’t Reinvent the Wheel!

• SimpleWebServer has many
security vulnerabilities…

• Building a secure, high-performance
web server is a very challenging task

• Apache: www.apache.org

Source

• The content of these slides was adapted
from:

• "Foundations of Security: What Every Programmer
Needs To Know" (ISBN 1590597842) by Neil Daswani,
Christoph Kern, and Anita Kesavan.

• http://www.learnsecurity.com/ntk

46

Google Hacking and Web Hacking

47

Happy Anniversary !

Search Engine Hacking - First solid
documentation: SimpleNomad, 1996, AltaVista
textfiles.com

Web Hacking: Pick a site, find the vulnerability
Google Hacking : Pick a vulnerability, find the site.

Don’t Be A Target of Opportunity

48

Just the beginning …

Non-Public Systems
Intranets, access-restricted extranets, web services

Not all internet systems crawled
Have to request a crawl
Extranets, customer portals

Google: very limited crawl
Robots.txt, forms, javascript
Linked content only !

Exposure has to be hard-linked
No tampering

49

The Perfect Drug

Warning ! Search engine hacking can be highly addictive

Focus on what to look for, not on the search engine.

A Few of my Favorite Things

Source code galore: Need a code sample ? Grab a code sample !

File traversals : full system read access

Command Execution : Executing shell commands through a
browser, basically port 80 telnet.

File Uploads: Don’t like the content ? Make your own !

50

Basic Google Hacking - Using File Types

51

Works for many other file types

52

Curioser and Curioser

53

Googling for a Recent Exploit – Using Constraints

Site frames content

Content can be external

Frame source specified on client
side

website.com/showframe.asp?src=fakesite.com/fakelogin.html

Cross – Site Framing

54

INURL

Restricts search
terms to URL itself
(buggy)

Want the source to
be specified in the
client

Want the
source to be
external; not
on the same
site

Further
qualifier

55

Client-Sided Frame Source

56

Framed.

57

Directory Traversals !

58

SPAM ENGINES

59

Source Code

Database queries. They’re source code.
Hooray Source Code !

60

The Fun Never Stops

If you can read
source code, what do
source code do you
read ?

Depends on what
you’re interested in !

How about some
database connection
strings !

61

The Proverbial Post-It On the Monitor

Yes, those are real live database connection strings
Yes, they contain real live usernames and passwords

No, Special Agent, I didn’t try them out.

62

Web App Hacking’s Cool. Google Hacking’s Cool.

Everyone
Thought
This Was
Crazy ….

63

Then Santy Climbed Down the Chimney

Used a WEB APPLICATION
VULNERABILITY in a
common freeware PHP
application

Used GOOGLE to ID new
targets

Multiple improved variants
already out

December 20th 2004

64

Code Review of the Vuln App

URLDecode the input before removing special characters

65

MagicQuotes in PHP

Escapes single quotes

Turns ‘ into \’

Functional : prevents O’Malley and O’Brian from
O’Crashing your query.

MagicQuotes are magically functional, but not a
security feature, and were never meant to be

66

Rasmus Lerdof says …

“You always have to escape quotes before you can insert a
string into a database. If you don't, you get an ugly SQL
error and your application doesn't work. After
explaining this simple fact to people for the 50th
time one day I finally got fed up and had PHP do
the escaping on the fly. This way the applications
would work and the worst that would happen is that
someone would see an extra \ on the screen when they
output the data directly instead of sticking it into the
database.”

Source: SitePoint.com, Interview - PHP's Creator, Rasmus Lerdorf,
http://www.sitepoint.com/article/phps-creator-rasmus-lerdorf/3

67

Attack of the Worms: How it works

URLEncoded characters

PHP Fwrite command

PHP Fopen command

68

Decoding the attack

Decode once and compare

%27%2E is not a single quote

MagicQuotes recognizes plain and encoded single quotes

69

Back to the Code

Turned the remaining %27%2E into ‘.
Making the injection work.

Application decoded again
in the code

70

Basic Google

Viewtopic.php with random numbers as a
parameter (1414414=5858583)

Numbers NOT evasion – ensure different
websites in each result

Unimaginative and easily signatured ….

71

Google shutdown the query …

And gave me spyware advice …?

72

Google Evasion

Bonus :Spot the Google bug.

Hmm …. Does Google recognize Blank Spaces ?

Viewtopic by itself could be anything. Add phpBB’s footer and it’s more accurate

Viewtopic.php is not the same as viewtopic and php

73

Or Just “Switch”

4 Variants in JUST DAYS.

There’s more than one engine to search the web

74

Prologue

New Version of phpBoard released

Remedial Action suggested to immediate users
of the software was to remove the
“URLDECODE”

Prevents the second decode: ‘ remains as %27

Still not rock solid input validation

75

Security
Professionals
Don’t Know The
Applications

“As an Application
Developer, I can
build great features
and functions while
meeting deadlines,
but I don’t know
how to build
security into my
web applications.”

The Web Application
Security Gap

“As a Network Security
Professional, I don’t
know how my
company’s web
applications are
supposed to work so I
deploy a protective
solution…but don’t
know if it’s protecting
what it’s supposed to.”

Application
Developers and
QA Professionals
Don’t Know
Security

Why Web Application Risks Occur

76

The Old Paradigm

Customer performs
acceptance testing

Program goes live

Development builds
Application

QA performs functional
testing

Security tests server
patches and configuration

Functional defects
are found and fixed

App is declared
ready for UAT

Security applies
any missing
patches or tweaks
configuration

Deployment begins

77

Security Cannot Fix Application Issues

Customer performs
acceptance testing

Program goes live

Development builds
Application

QA performs functional
testing

Security discovers
application vulnerabilities

App is declared
ready for UAT

Application either
goes back to
square one, or
goes live with
known
vulnerabilities

Deployment begins

78

Audit Development

QAProduction

Security
Operations
and Auditors

Developers

QA and
Developers

Security Testing To The Application Lifecycle

Auditors, Dev,
Compliance, and
Business Subject
Matter Experts
(SME)

